GATE Syllabus
CS: Computer Science and Information TechnologySection 1: Engineering MathematicsCalculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration. Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions. Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition. Probability: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem. Section 2: Digital LogicBoolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic fixed and floating point. Section 3: Computer Organization and ArchitectureMachine instructions and addressing modes. ALU, datapath and control unit. Instruction pipelining. Memory hierarchy cache, main memory and secondary storage; I/O interface (interrupt and DMA mode). Section 4: Programming and Data StructuresProgramming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs. Section 5: AlgorithmsSearching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divideandconquer. Graph search, minimum spanning trees, shortest paths. Section 6: Theory of ComputationRegular expressions and finite automata. Contextfree grammars and pushdown automata. Regular and contexfree languages, pumping lemma. Turing machines and undecidability. Section 7: Compiler DesignLexical analysis, parsing, syntaxdirected translation. Runtime environments. Intermediate code generation. Section 8: Operating SystemProcesses, threads, interprocess communication, concurrency and synchronization. Deadlock. CPU scheduling. Memory management and virtual memory. File systems. Section 9: DatabasesERmodel. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control. Section 10: Computer NetworksConcept of layering. LAN technologies (Ethernet). Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control. Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of WiFi. Network security: authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls. EC: Electronics and Communications EngineeringSection 1: Engineering MathematicsLinear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigen values and eigen vectors, rank, solution of linear equations  existence and uniqueness. Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series. Differential Equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems. Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stoke's theorems. Complex Analysis: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula; Taylor's and Laurent's series, residue theorem. Numerical Methods: Solution of nonlinear equations, single and multistep methods for differential equations, convergence criteria. Probability and Statistics: Mean, median, mode and standard deviation; combinatorial probability, probability distribution functions binomial, Poisson, exponential and normal; Joint and conditional probability; Correlation and regression analysis. Section 2: Networks, Signals and SystemsNetwork solution methods: nodal and mesh analysis; Network theorems: superposition, Thevenin and Norton's, maximum power transfer; WyeDelta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Linear 2port network parameters: driving point and transfer functions; State equations for networks. Continuoustime signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discretetime signals: discretetime Fourier transform (DTFT), DFT, FFT, Ztransform, interpolation of discretetime signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques. Section 3: Electronic DevicesEnergy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; PN junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twintub CMOS process. Section 4: Analog CircuitsSmall signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Singlestage BJT and MOSFET amplifiers: biasing, bias stability, midfrequency small signal analysis and frequency response; BJT and MOSFET amplifiers: multistage, differential, feedback, power and operational; Simple opamp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, singletransistor and opamp configurations; Function generators, waveshaping circuits and 555 timers; Voltage reference circuits; Power supplies: ripple removal and regulation. Section 5: Digital CircuitsNumber systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flipflops, counters, shiftregisters and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8bit microprocessor (8085): architecture, programming, memory and I/O interfacing. Section 6: Control SystemsBasic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steadystate analysis of LTI systems; Frequency response; RouthHurwitz and Nyquist stability criteria; Bode and rootlocus plots; Lag, lead and laglead compensation; State variable model and solution of state equation of LTI systems. Section 7: CommunicationsRandom processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems; Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers, circuits for analog communications; Information theory: entropy, mutual information and channel capacity theorem; Digital communications: PCM, DPCM, digital modulation schemes, amplitude, phase and frequency shift keying (ASK, PSK, FSK), QAM, MAP and ML decoding, matched filter receiver, calculation of bandwidth, SNR and BER for digital modulation; Fundamentals of error correction, Hamming codes; Timing and frequency synchronization, intersymbol interference and its mitigation; Basics of TDMA, FDMA and CDMA. Section 8: ElectromagneticsElectrostatics; Maxwell's equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector; Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth; Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, Sparameters, Smith chart; Waveguides: modes, boundary conditions, cutoff frequencies, dispersion relations; Antennas: antenna types, radiation pattern, gain and directivity, return loss, antenna arrays; Basics of radar; Light propagation in optical fibers. EE: Electrical EngineeringSection 1: Engineering MathematicsLinear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multistep methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, zTransform. Electrical Engineering Section 2: Electric CircuitsNetwork graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steadystate analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Twoport networks, Three phase circuits, Power and power factor in ac circuits. Section 3: Electromagnetic FieldsCoulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, BiotSavart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits,Self and Mutual inductance of simple configurations. Section 4: Signals and SystemsRepresentation of continuous and discrete time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and zTransform. Section 5: Electrical MachinesSingle phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Autotransformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torquespeed characteristics, noload and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. Section 6: Power SystemsPower generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Perunit quantities, Bus admittance matrix, GaussSeidel and NewtonRaphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of overcurrent, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. Section 7: Control SystemsMathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steadystate analysis of linear time invariant systems, RouthHurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and LeadLag compensators; P, PI and PID controllers; State space model, State transition matrix. Section 8: Electrical and Electronic MeasurementsBridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis. Section 9: Analog and Digital ElectronicsCharacteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing. Section 10: Power ElectronicsCharacteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and BuckBoost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. ME: Mechanical EngineeringSection 1: Engineering MathematicsLinear Algebra: Matrix algebra, systems of linear equations, eigenvalues and eigenvectors. Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green's theorems. Differential equations: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; EulerCauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations. Complex variables: Analytic functions; CauchyRiemann equations; Cauchy's integral theorem and integral formula; Taylor and Laurent series. Probability and Statistics: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions. Numerical Methods: Numerical solutions of linear and nonlinear algebraic equations; integration by trapezoidal and Simpson's rules; single and multistep methods for differential equations. Section 2: Applied Mechanics and DesignEngineering Mechanics: Freebody diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions. Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength. Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope. Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts. Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the SN diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs. Section 3: Fluid Mechanics and Thermal SciencesFluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; controlvolume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings. HeatTransfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis. Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations. Applications: Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Airstandard Otto, Diesel and dual cycles. Refrigeration and airconditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Peltonwheel, Francis and Kaplan turbines. Section 4: Materials, Manufacturing and Industrial EngineeringEngineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stressstrain diagrams for engineering materials. Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding. Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multipoint cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of nontraditional machining processes; principles of work holding, design of jigs and fixtures. Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly. Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools. Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning. Inventory Control: Deterministic models; safety stock inventory control systems. Operations Research: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM. CE: Civil EngineeringSection 1: Engineering MathematicsLinear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors. Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima, Taylor and Maclaurin series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. Ordinary Differential Equation (ODE): First order (linear and nonlinear) equations; higher order linear equations with constant coefficients; EulerCauchy equations; Laplace transform and its application in solving linear ODEs; initial and boundary value problems. Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of onedimensional diffusion equation; first and second order onedimensional wave equation and twodimensional Laplace equation. Probability and Statistics: Definitions of probability and sampling theorems; Conditional probability; Discrete Random variables: Poisson and Binomial distributions; Continuous random variables: normal and exponential distributions; Descriptive statistics  Mean, median, mode and standard deviation; Hypothesis testing. Numerical Methods: Accuracy and precision; error analysis. Numerical solutions of linear and nonlinear algebraic equations; Least square approximation, Newton's and Lagrange polynomials, numerical differentiation, Integration by trapezoidal and Simpson's rule, single and multistep methods for first order differential equations. Section 2: Structural EngineeringEngineering Mechanics: System of forces, freebody diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler's equations of motion; Impulsemomentum; Energy methods; Principles of virtual work. Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Theories of failures; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, buckling of column, combined and direct bending stresses. Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis. Construction Materials and Management: Construction Materials: Structural steel  composition, material properties and behaviour; Concrete  constituents, mix design, shortterm and longterm properties; Bricks and mortar; Timber; Bitumen. Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis and standard specifications; Cost estimation; Project planning and network analysis  PERT and CPM. Concrete Structures: Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads. Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam columns, column bases; Connections  simple and eccentric, beamcolumn connections, plate girders and trusses; Plastic analysis of beams and frames. Section 3: Geotechnical EngineeringSoil Mechanics: Origin of soils, soil structure and fabric; Threephase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability  one dimensional flow, Darcy's law; Seepage through soils  twodimensional flow, flow nets, uplift pressure, piping; Principle of effective stress, capillarity, seepage force and quicksand condition; Compaction in laboratory and field conditions; Onedimensional consolidation, time rate of consolidation; Mohr's circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand. Foundation Engineering: Subsurface investigations  scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories  Rankine and Coulomb; Stability of slopes  finite and infinite slopes, method of slices and Bishop's method; Stress distribution in soils  Boussinesq's and Westergaard's theories, pressure bulbs; Shallow foundations  Terzaghi's and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations  types of piles, dynamic and static formulae, load capacity of piles in sands and clays, pile load test, negative skin friction. Section 4: Water Resources EngineeringFluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum, energy and corresponding equations; Potential flow, applications of momentum and energy equations; Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth. Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of hydraulic machines, specific speed of pumps and turbines; Channel Hydraulics  Energydepth relationships, specific energy, critical flow, slope profile, hydraulic jump, uniform flow and gradually varied flow. Hydrology: Hydrologic cycle, precipitation, evaporation, evapotranspiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface runoff models, ground water hydrology  steady state well hydraulics and aquifers; Application of Darcy's law. Irrigation: Duty, delta, estimation of evapotranspiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, crossdrainage structures, outlets and escapes. Section 5: Environmental EngineeringWater and Waste Water: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal. Air Pollution: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits. Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal). Noise Pollution: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution. Section 6: Transportation EngineeringTransportation Infrastructure: Highway alignment and engineering surveys; Geometric design of highways  crosssectional elements, sight distances, horizontal and vertical alignments; Geometric design of railway track; Airport runway length, taxiway and exit taxiway design. Highway Pavements: Highway materials  desirable properties and quality control tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible pavement using IRC: 372012; Design of rigid pavements using IRC: 582011; Distresses in concrete pavements. Traffic Engineering: Traffic studies on flow, speed, travel time  delay and OD study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Control devices, signal design by Webster's method; Types of intersections and channelization; Highway capacity and level of service of rural highways and urban roads. Section 7: Geomatics EngineeringPrinciples of surveying; Errors and their adjustment; Maps  scale, coordinate system; Distance and angle measurement  Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry  scale, flying height; Remote sensing  basics, platform and sensors, visual image interpretation; Basics of Geographical information system (GIS) and Geographical Positioning system (GPS). AG: Agricultural EngineeringSection 1: Engineering MathematicsLinear Algebra: Matrices and determinants, systems of linear equations, Eigen values and eigen vectors. Calculus: Limit, continuity and differentiability; partial derivatives; maxima and minima; sequences and series; tests for convergence; Fourier series, Taylor series. Vector Calculus: Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss and Green's theorems. Differential Equations: Linear and nonlinear first order Ordinary Differential Equations (ODE); Higher order linear ODEs with constant coefficients; Cauchy's and Euler's equations; Laplace transforms; Partial Differential Equations  Laplace, heat and wave equations. Probability and Statistics: Mean, median, mode and standard deviation; random variables; Poisson, normal and binomial distributions; correlation and regression analysis; tests of significance, analysis of variance (ANOVA). Numerical Methods: Solutions of linear and nonlinear algebraic equations; numerical integration  trapezoidal and Simpson's rule; numerical solutions of ODE. Section 2: Farm MachineryMachine Design: Design and selection of machine elements  gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, torque, speed, displacement and acceleration on machine elements. Farm Machinery: Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage, sowing, planting, fertilizer application, intercultivation, spraying, mowing, chaff cutting, harvesting, threshing and transport; testing of agricultural machinery and equipment; calculation of performance parameters  field capacity, efficiency, application rate and losses; cost analysis of implements and tractors. Section 3: Farm PowerSources of Power: Sources of power on the farm  human, animal, mechanical, electrical, wind, solar and biomass; biofuels. Farm Power: Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems  fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses. Tractors and Powertillers: Type, selection, maintenance and repair of tractors and powertillers; tractor clutches and brakes; power transmission systems  gear trains, differential, final drives and power takeoff; mechanics of tractor chassis; traction theory; three point hitches free link and restrained link operations; mechanical steering and hydraulic control systems used in tractors; tractor tests and performance. Human engineering and safety in design of tractor and agricultural implements. Section 4: Soil and Water Conservation EngineeringFluid Mechanics: Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; hydrostatic forces on plane and curved surface; continuity equation; Bernoulli's theorem; laminar and turbulent flow in pipes, Darcy Weisbach and HazenWilliams equations, Moody's diagram; flow through orifices and notches; flow in open channels. Soil Mechanics: Engineering properties of soils; fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr's circle of stress, active and passive earth pressures; stability of slopes. Hydrology: Hydrological cycle and components; meteorological parameters, their measurement and analysis of precipitation data; runoff estimation; hydrograph analysis, unit hydrograph theory and application; stream flow measurement; flood routing, hydrological reservoir and channel routing. Surveying and Leveling: Measurement of distance and area; instruments for surveying and leveling; chain surveying, methods of traversing; measurement of angles and bearings, plane table surveying; types of leveling; theodolite traversing; contouring; computation of areas and volume. Soil and Water Erosion: Mechanics of soil erosion, soil erosion types, wind and water erosion, factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion; terraces and bunds; vegetative waterways; gully control structures, drop, drop inlet and chute spillways; earthen dams. Watershed Management: Watershed characterization; land use capability classification;rainwater harvesting structures,check dams and farm ponds. Section 5: Irrigation and Drainage EngineeringSoilWaterPlant Relationship: Water requirement of crops; consumptive use and evapotranspiration; measurement of infiltration, soil moisture and irrigation water infiltration. Irrigation Water Conveyance and Application Methods: Design of irrigation channels and underground pipelines; irrigation scheduling; surface, sprinkler and micro irrigation methods, design and evaluation of irrigation methods; irrigation efficiencies. Agricultural Drainage: Drainage coefficient; planning, design and layout of surface and subsurface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality and reuse. Groundwater Hydrology: Groundwater occurrence; Darcy's Law, steady flow in confined and unconfined aquifers, evaluation of aquifer properties; groundwater recharge. Wells and Pumps: Types of wells, steady flow through wells; classification of pumps; pump characteristics; pump selection and installation. Section 6: Agricultural Processing EngineeringDrying: Psychrometry  properties of airvapors mixture; concentration and drying of liquid foods  evaporators, tray, drum and spray dryers; hydrothermal treatment; drying and milling of cereals, pulses and oilseeds. Size Reduction and Conveying: Mechanics and energy requirement in size reduction of granular solids; particle size analysis for comminuted solids; size separation by screening; fluidization of granular solidspneumatic, bucket, screw and belt conveying; cleaning and grading; effectiveness of grain cleaners; centrifugal separation of solids, liquids and gases. Processing and Byproduct Utilization: Processing of seeds, spices, fruits and vegetables; Byproduct utilization from processing industries. Storage Systems: Controlled and modified atmosphere storage; perishable food storage, godowns, bins and grain silos. Section 7: Dairy and Food EngineeringHeat and Mass Transfer: Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations; material and energy balances in food processing systems; water activity, sorption and desorption isotherms. Preservation of Food: Kinetics of microbial death  pasteurization and sterilization of milk and otherliquid foods; preservation of food by cooling and freezing; refrigeration and cold storage basics and applications.
Next TopicGATE Preperation

DBMS
DS
DAA
OS
C. Network
Compiler D.
Web Tech.
Cyber Sec.
C
C++
Java
.Net
Python
Programs
Control S.