Javatpoint Logo
Javatpoint Logo

Data Flow In MapReduce

MapReduce is used to compute the huge amount of data . To handle the upcoming data in a parallel and distributed form, the data has to flow from various phases.

Data Flow In MapReduce

Phases of MapReduce data flow

Input reader

The input reader reads the upcoming data and splits it into the data blocks of the appropriate size (64 MB to 128 MB). Each data block is associated with a Map function.

Once input reads the data, it generates the corresponding key-value pairs. The input files reside in HDFS.

Note - The input data can be in any form.

Map function

The map function process the upcoming key-value pairs and generated the corresponding output key-value pairs. The map input and output type may be different from each other.

Partition function

The partition function assigns the output of each Map function to the appropriate reducer. The available key and value provide this function. It returns the index of reducers.

Shuffling and Sorting

The data are shuffled between/within nodes so that it moves out from the map and get ready to process for reduce function. Sometimes, the shuffling of data can take much computation time.

The sorting operation is performed on input data for Reduce function. Here, the data is compared using comparison function and arranged in a sorted form.

Reduce function

The Reduce function is assigned to each unique key. These keys are already arranged in sorted order. The values associated with the keys can iterate the Reduce and generates the corresponding output.

Output writer

Once the data flow from all the above phases, Output writer executes. The role of Output writer is to write the Reduce output to the stable storage.

Next TopicMapReduce API

Youtube For Videos Join Our Youtube Channel: Join Now


Help Others, Please Share

facebook twitter pinterest

Learn Latest Tutorials


Trending Technologies

B.Tech / MCA