Full SubtractorThe Half Subtractor is used to subtract only two numbers. To overcome this problem, a full subtractor was designed. The full subtractor is used to subtract three 1bit numbers A, B, and C, which are minuend, subtrahend, and borrow, respectively. The full subtractor has three input states and two output states i.e., diff and borrow. Block diagramTruth TableIn the above table,
Note: We can simplify each of the Boolean output functions with the help of the unique map method.The SOP form can be obtained with the help of Kmap as: Diff=xy' z'+x' y' z+xyz+x'yz' Borrow=x' z+x' y+yz Construction of Full Subtractor Circuit:The above block diagram describes the construction of the Full subtractor circuit. In the above circuit, there are two half adder circuits that are combined using the OR gate. The first half subtractor has two singlebit binary inputs A and B. As we know that, the half subtractor produces two outputs, i.e., 'Diff' and 'Borrow'. The 'Diff' output of the first subtractor will be the first input of the second half subtractor, and the 'Borrow' output of the first subtractor will be the second input of the second half subtractor. The second half subtractor will again provide 'Diff' and 'Borrow'. The final outcome of the Full subtractor circuit is the 'Diff' bit. In order to find the final output of the 'Borrow', we provide the 'Borrow' of the first and the second subtractor into the OR gate. The outcome of the OR gate will be the final carry 'Borrow' of full subtractor circuit. The MSB is represented by the final 'Borrow' bit. The full subtractor logic circuit can be constructed using the 'AND', 'XOR', and NOT gate with an OR gate. The actual logic circuit of the full subtractor is shown in the above diagram. The full subtractor circuit construction can also be represented in a Boolean expression. Diff:
Borrow:
Next TopicBinary Adder
