Search Algorithms in Artificial IntelligenceSearch algorithms are one of the most important areas of Artificial Intelligence. This topic will explain all about the search algorithms in AI. Problemsolving agents:In Artificial Intelligence, Search techniques are universal problemsolving methods. Rational agents or Problemsolving agents in AI mostly used these search strategies or algorithms to solve a specific problem and provide the best result. Problemsolving agents are the goalbased agents and use atomic representation. In this topic, we will learn various problemsolving search algorithms. Search Algorithm Terminologies:
Properties of Search Algorithms:Following are the four essential properties of search algorithms to compare the efficiency of these algorithms: Completeness: A search algorithm is said to be complete if it guarantees to return a solution if at least any solution exists for any random input. Optimality: If a solution found for an algorithm is guaranteed to be the best solution (lowest path cost) among all other solutions, then such a solution for is said to be an optimal solution. Time Complexity: Time complexity is a measure of time for an algorithm to complete its task. Space Complexity: It is the maximum storage space required at any point during the search, as the complexity of the problem. Types of search algorithmsBased on the search problems we can classify the search algorithms into uninformed (Blind search) search and informed search (Heuristic search) algorithms. Uninformed/Blind Search:The uninformed search does not contain any domain knowledge such as closeness, the location of the goal. It operates in a bruteforce way as it only includes information about how to traverse the tree and how to identify leaf and goal nodes. Uninformed search applies a way in which search tree is searched without any information about the search space like initial state operators and test for the goal, so it is also called blind search.It examines each node of the tree until it achieves the goal node. It can be divided into five main types:
Informed SearchInformed search algorithms use domain knowledge. In an informed search, problem information is available which can guide the search. Informed search strategies can find a solution more efficiently than an uninformed search strategy. Informed search is also called a Heuristic search. A heuristic is a way which might not always be guaranteed for best solutions but guaranteed to find a good solution in reasonable time. Informed search can solve much complex problem which could not be solved in another way. An example of informed search algorithms is a traveling salesman problem.
Next TopicUninformed Search Algorithms

Ansible
Mockito
Talend
Azure
SharePoint
Powershell
Kali Linux
OpenCV
Kafka
Pandas
Joomla
Reinforcement