The generator matrix
1 0 1 1 1 1 1 0 1 1 1 X 1 1 1 X 1 1 1 1 1 1 0 X 1 1 1 1 1 1 1 1 1 2X 2X 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 2 2X+1 0 2 1 X 2X+1 X+2 1 X X+1 X+2 1 X+1 0 X 1 2 X+2 1 1 2X 2X 2X 2X+1 X+1 1 2X+2 2X+2 2X+2 1 1 1 0 0 X X 0 X 2X+1 2X+1 X+1 X+1 2X+1 X+1 2X 1 2X 1 2X
0 0 2X 0 X X 2X 2X 2X 0 X X X 2X 2X 2X X 2X 0 0 X 0 X 0 0 X 2X 2X 0 X 0 X 2X 0 X 2X 0 X 2X X 2X 0 2X X 0 X 0 2X 0 2X X X 2X
generates a code of length 53 over Z3[X]/(X^2) who´s minimum homogenous weight is 105.
Homogenous weight enumerator: w(x)=1x^0+50x^105+162x^106+26x^108+4x^132
The gray image is a linear code over GF(3) with n=159, k=5 and d=105.
As d=105 is an upper bound for linear (159,5,3)-codes, this code is optimal over Z3[X]/(X^2) for dimension 5.
This code was found by Heurico 1.16 in 0.0144 seconds.