Algorithm Design TechniquesThe following is a list of several popular design approaches: 1. Divide and Conquer Approach: It is a topdown approach. The algorithms which follow the divide & conquer techniques involve three steps:
2. Greedy Technique: Greedy method is used to solve the optimization problem. An optimization problem is one in which we are given a set of input values, which are required either to be maximized or minimized (known as objective), i.e. some constraints or conditions.
3. Dynamic Programming: Dynamic Programming is a bottomup approach we solve all possible small problems and then combine them to obtain solutions for bigger problems. This is particularly helpful when the number of copying subproblems is exponentially large. Dynamic Programming is frequently related to Optimization Problems. 4. Branch and Bound: In Branch & Bound algorithm a given subproblem, which cannot be bounded, has to be divided into at least two new restricted subproblems. Branch and Bound algorithm are methods for global optimization in nonconvex problems. Branch and Bound algorithms can be slow, however in the worst case they require effort that grows exponentially with problem size, but in some cases we are lucky, and the method coverage with much less effort. 5. Randomized Algorithms: A randomized algorithm is defined as an algorithm that is allowed to access a source of independent, unbiased random bits, and it is then allowed to use these random bits to influence its computation. 6. Backtracking Algorithm: Backtracking Algorithm tries each possibility until they find the right one. It is a depthfirst search of the set of possible solution. During the search, if an alternative doesn't work, then backtrack to the choice point, the place which presented different alternatives, and tries the next alternative. 7. Randomized Algorithm: A randomized algorithm uses a random number at least once during the computation make a decision. Example 1: In Quick Sort, using a random number to choose a pivot. Example 2: Trying to factor a large number by choosing a random number as possible divisors. Loop invariantsThis is a justification technique. We use loop invariant that helps us to understand why an algorithm is correct. To prove statement S about a loop is correct, define S concerning series of smaller statement S_{0} S_{1}....S_{k} where,
Next TopicAsymptotic Analysis

Ansible
Mockito
Talend
Azure
SharePoint
Powershell
Kali Linux
OpenCV
Kafka
Pandas
Joomla
Reinforcement