MATLAB VariablesObjective: To study data types, constant and variable, character, operators, assignment statement. To consider vectors and matrices commands to operate on vectors and matrices, matrices manipulation. Variables: MATLAB variable is a region of memory containing an area which is known by the user-specified name. These are of two types: - double: - 64 bit (10^-308 to 10^308 with 15 to 16 significant decimal digits).
e.g:
var=10.5 //Real value
var=10i , var=-4j //Imaginary value
var=10+10i - char: - 16 bit (-32768-32767)
e.g:
var='This is a character string';
Initialization of a variable:- Assignment statement: It is simplest and used for small arrays.
Var=expression; Where var is name and expression are a scaler constant, an array or a combination of constraints, other variables, and mathematical operations. The number of elements in every row must be same. Also, the number of elements in every column must be the same.
>> var= [3.4] //creates a 1x1 array with value 3.4
var = 3.4000
>> var= [1.0 2.0 3.0] // creates a 1x3 array with value [1 2 3]
var=1 2 3
>> var= [1.0;2.0;3.0] // creates a 3x1 array
var = 1
2
3
>> var= [1,2,3;4,5,6] //creates a 2x3 array
var = 1 2 3
4 5 6
>> var= [1,2,3
4,5,6] //creates a 2x3 array
var = 1 2 3
4 5 6
>> var= [] //creates an empty array
var = []
>> var1= [0 1+7]
var1 = 0 8
>> var2=[var1(2) 7 var1]
var2 = 8 7 0 8
>> var3(2,3) =5
var3 = 0 0 0
0 0 5
>> var3(3,3) =6
var3 =0 0 0
0 0 5
0 0 6
>> x= [1:2:10]
x = 1 3 5 7 9 Shortcuts can be combined with the transpose operator (') to initialize column vectors. >> f= [1:4]'
f =1
2
3
4
>> g=[1:4]
g =1 2 3 4
>> h=[g',g']
h =1 1
2 2
3 3
4 4 - Built in functions:
Zeros:
>> a=zeros (2)
a =0 0
0 0
>> b=zeros (2,3)
b = 0 0 0
0 0 0
>> c= [1,2;3,4]
c =1 2
3 4
>> d=zeros(size(c))
d = 0 0
0 0 Ones: 0's are replaced by 1's >> f=ones (4)
f = 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 Eyes: to generate arrays containing identity matrices in which all on-diagonal element is 1 while all off-diagonal element is 0. >> e=eye(4)
e = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 - Keyboard input:input funcn
- var=input ('enter a input value')
- enter a input value
- var=input ('enter data','s')
- enter data 3
var =3
- Multidimensional array
- c(:,:,1) =[1 2 3;4 5 6]
- c = 1 2 3
4 5 6 - c(:,:,2) = 7 8 9
10 11 12
- STORING MULTIDIMENSIONAL ARRAY IN MEMORY
• Eg: a= [1 2 3;4 5 6;7 8 9;10 11 12]
a =
1 2 3
4 5 6
7 8 9
10 11 12 - Subarray
• arr= [1 2 3;-2 -3 -4;3 4 5]
arr = 1 2 3
-2 -3 -4
3 4 5
arr1(1,:)=[1 2 3]
• arr1 = 1 2 3 - End func:
• arr=[1 2 3 4 5 6 7 8];
• >> arr(5:end)
ans = 5 6 7 8
• >> arr(1:2,[1,4])=[20 21 ;22 23]
arr =
20 2 3 21 5 6 7 8
22 0 0 23 0 0 0 0
• >> arr=[1 2 3 4 ;5 6 7 8;9 10 11 12];
• >> arr(1:2,1:2)=1
arr =
1 1 3 4
1 1 7 8
9 10 11 12 - Predefined specific values:
- pi: It contains values up to 15 significant digits
- inf: infinity
- nan: not a number
- clock: current date & time in the form of 6 element vector containing
year, month, datemin and second - date: current date in a character string format eg:24-Jan-2019
- eps:Esiton i.e smallest difference b/w two no's
- ans: It used to store the result of an expression
- Displaying Output Data:
- Formatted Output Function With fprintf Function:
- Display one or more values together with related text & lets the programmer to control the way the display value appears
- Syntax: fprintf(format,data);
- Eg:fprintf('the value of pi=%f\n',pi);
fprintf('the value of pi=%d\n',pi); fprintf('the value of pi=%e\n',pi);
- Scalar Operations:
• E.g.: =2^ ((8+2)/5)
=26(10/5)
=2^2
=4 - Array Operations:
z=1
>> z
z =1 2
3 4
>> y=-1
y = -1
>> y
y =-1 3
-2 0
>> y+z
ans =
0 5
1 4 - Matrix Operation based on Linear Algebra:
Operations | Matlab Form | Comments |
---|
Array Addition | a+b | Array & matrix addition are identical | Array Subtraction | a-b | Array & matrix subtraction are identical | Array Multiplication | a.*b | Array multiplication element by element multiplication of a & b | Matrix Multiplication | a*b | For matrix multiplication no of the column in matrix a=no of column of matrix b | Array Right Division | a./b | Element by element division of a & b | Array Left Division | a.\b | Element by element division of a & b with in the Nr. | Matrix Right Division | a/b | a* inv(b) where inv represent inverse | Matrix Left Division | a\b | inv(a)*b | Array Exponential | a.^b | Element by element exponential of a & b i.e a( i , j) ^ b( i , j) |
|